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The mass parameter responsible for inflation in the simplest original F-term inflationary model
can be generated if the gauginos in a hidden sector condense and the inflaton field linearly con-
tributes to the relevant gauge kinetic function. We point out that the relevant local and/or global
symmetries in the F-term inflationary models can be broken even during inflation if the inflaton
field couples non-linearly to hidden sector gauginos and waterfall fields. Accordingly, the resultant
topological objects are diluted away during inflation, so the monopole and/or the cosmic string
problems in the simplest original F-term inflationary model can be resolved in this case.
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I. INTRODUCTION

The best idea to resolve the flatness and homogeneous
problems arising in the standard big bang cosmology is
believed to introduce the cosmological inflation [1,2]. As
a big bonus, its introduction is known to provide also
seeds of the large scale structure of the present universe
as a result of its quantum phenomena [3–5]. However,
it is highly non-trivial to realize the inflationary idea as
a concrete model in the framework of the quantum field
theory. It is basically because this scenario requires a
light enough scalar field called “inflaton”, which drives
inflation. Although a light scalar mass compared to a
given cutoff scale is known to be perturbatively unstable
in quantum field theory [6], the inflaton mass should be
much lighter than the Hubble scale during inflation era
for successful cosmological inflation [7–9].

As in elementary particle physics, thus, introduction
of supersymmetry (SUSY) in inflationary cosmology was
expected to be helpful for resolving this problem. How-
ever, positive large vacuum energy density during infla-
tion badly breaks SUSY, and so an inflaton mass of the
Hubble scale during inflation can be induced even at tree
level as a supergravity (SUGRA) effect (“η problem”)
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[10,11]. Nonetheless, the inflation has been attempted
to be realized in the SUSY framework, maybe because
such a problem associated with the quantum corrections
on the inflaton mass would be expected to be resolved
somehow in the SUSY framework [10,12].

In this paper, we will discuss one of the SUSY infla-
tionary scenarios, “F-term inflation”.

II. F-TERM INFLATION

The simplest F-term inflationary model is described
with the following superpotential [10,13–16]:

W = κS(ΦΦc −M2), (1)

where κ and M2 are dimensionless and dimensionful pa-
rameters, respectively, and Φ, Φc, and S are superfields
carrying local and/or global charges. Here we assume
that M2 is positive definite. It turns out that the size of
M2 should be around the scale of the SUSY grand unified
theory (GUT), M2 ≈ (1016 GeV)2 [13] for explaining the
cosmic microwave background anisotropy, δT/T ∼ 10−5

[17]. In fact, it was the main motivation to construct
inflationary models in the framework of the SUSY GUT
[14–16]. While Φ and Φc can carry various proper gauge
charges, S carries only a (global) U(1)R charge. In this
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model, the scalar component of S plays the role of the
inflaton.

From the above superpotential, the following scalar
potential is derived:

VF = |Fs|2 + (|Fϕc |2 + |Fϕ|2)

=
∣∣κ(ϕϕc −M2)

∣∣2 + |κ · s|2
(
|ϕ|2 + |ϕc|2

)
, (2)

where ϕ, ϕc, and s denote the scalar components of Φ,
Φc, and S, respectively. When ϕ and ϕc (“waterfall
fields”) carry gauge charges, the corresponding D-term
potential should also be considered. Since the F-term
potential is assumed to dominate over the D-term po-
tential in F-term inflationary scenario, throughout this
paper we will take the D-flat direction, ϕ∗ = ϕc, along
which the D-term potential vanishes.

At the minimum of the the scalar potential, the water-
fall fields ϕ and ϕc develop vacuum expectation values
(VEVs), ⟨ϕϕc⟩ = ⟨|ϕ|2⟩ = M2, while ⟨s⟩ = 0. Conse-
quently, the scalar potential VF vanishes at the mini-
mum, and so the Minkowski space can be achieved. Due
to the non-zero VEVs of ϕ and ϕc, the gauge symmetry
under which ϕ and ϕc are charged should be broken at
the minimum of the scalar potential.

For inflation, let us suppose that |s|2 ≫ M2 (but
|s|2 ≪ M2

P ), which can be realized e.g., by a thermal
effect when the temperature of the universe is very high
in the early hot universe. Since κ · s plays the role of
the mass of ϕ and ϕc as seen in Eq. (2), ϕ and ϕc should
stay at the origin in this case. Then we have a positive
constant vacuum energy density, VF = |κM2|2, which
gives rise to inflation.

Although we include the SUGRA correction to the
constant potential VF = |κM2|2, it can be negligible in
this model:

VSUGRA

= eK/M2
P

[∣∣∣∣∂Weff
∂s

+
Weff
M2

P

∂K

∂s

∣∣∣∣2 − 3

M2
P

|Weff|2
]

≈
(
1 +

|s|2

M2
P

+ · · ·
)(∣∣∣∣1 + |s|2

M2
P

∣∣∣∣2 − 3
|s|2

M2
P

)∣∣κM2
∣∣2

≈
∣∣κM2

∣∣2 [1 +O(|s|4/M4
P )

]
, (3)

where MP denotes the reduced Planck mass (≈ 2.4 ×
1018 GeV). Here we applied the effective superpotential

during inflation, Weff = −κSM2 and assumed the mini-
mal form for the K�ahler potential, K = |S|2 + |Φ|2 +

|Φc|2. As seen in Eq. (3), the quadratic term yield-
ing inflaton mass of the Hubble scale during inflation,
∼ |κM2|2(|s|2/M2

P ) = 3H2|s|2 is canceled out in this
model, avoiding the η problem [10].

Since ϕ and ϕc does not get a non-zero VEV, the gauge
symmetry is not broken during inflation. On the other
hand, U(1)R is broken, because the potential of s is flat
and so it can take a large VEV larger than M . Since
SUSY is broken by the positive vacuum energy, how-
ever, quantum effects can radiatively modify the scalar
potential as follows [13]:

Vinf ≈ |κM2|2
(
1 + α log s

Λ

)
, (4)

where Λ denotes a renormalization scale, and α is a loop
factor α ≡ κ2/8π2. By the logarithmic slope of s in the
radiative correction of the scalar potential, s can slowly
roll down to the origin: when |s|2 > M2 is violated, ϕ and
ϕc also can return to the original minimum point with
⟨|ϕ|2⟩ = M2, breaking the gauge symmetry, and when
⟨s⟩ = 0, inflation can eventually terminate, restoring the
Minkowski space. In this scenario, thus, s drives inflation
successfully.

We should note here that the gauge symmetry is bro-
ken at the end of inflation, while it is unbroken during
inflation. As a result, unwanted topological objects such
as monopoles, cosmic strings, etc. are created after in-
flation is over, if the gauge group is simple or U(1) sym-
metry is involved. Accordingly, they have no chance to
be diluted away in the universe.

In order to address this issue, let us first discuss a
dynamical generation mechanism of the mass parameter
M .

III. THE MODEL

Unlike local SUSY, SUGRA adimts a gaugino’s con-
tribution to the F-term potential, if the gauge kinetic
function is non-minimal (∂fab/∂zi ̸= 0, i.e., not a con-
stant kinetic function) [6]:

VF =
∑
i

|Fi|2 + · · ·

with F ∗
i =

1

4

∑
a,b

∂fab(zi)

∂zi
λaλb + · · · , (5)
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where λa and λb are gauginos, i.e., fermionic super-
partners of the gauge fields in a non-Abelian gauge sec-
tor. fab(zi) stands for the gauge kinetic function, and
zi means scalar fields contributing to the gauge kinetic
function. It defines the kinetic terms of the gauge fields,
e−1L ⊃ −1

4 RefabF a
µνF

bµν . Suppose that M2 was absent
in the bare superpotential and scalar potential, keeping
only κSΦΦc in the superpotential of Eq. (1). If the gaug-
ino condenses by strong interaction in a hidden sector,
i.e., ⟨λaλb⟩ ̸= 0, and the inflaton s linearly contributes to
the gauge kinetic function, e.g., fab(s) = δab(1+c s/MP ),
one can readily see that the M2 term in Eq. (2) can be
reproduced, since Fs is modified as follows:

F ∗
s = κϕϕc + c

∑
a,b

δab
⟨λaλb⟩
4MP

, (6)

where c is a constant and δab means the Kroneker delta.
Hence, M2 in Eq. (2) is identified with −(c/κ)

∑
a

⟨λaλa⟩
4MP

.
Now let us extend our discussion to more general cases,

where s couples non-linearly to ϕϕc as well as a hidden
gauge sector:

Weff = −f(S) M2 + g(S) ΦΦc, (7)

where f(S) and M2 originate from the gauge kinetic
function and hidden sector gaugino condensation. Then
the resulting scalar potential is given by

Veff =
∣∣g′(s) ϕϕc − f ′(s) M2

∣∣2 + |g(s)|2
(
|ϕ|2 + |ϕc|2

)
.

(8)
Comparing Eq. (8) with Eq. (2), we note that the orig-
inal F-term inflation corresponds to the case that f(s)

and g(s) are linear in s. Let us require Veff = 0 with a
breaking phase of the gauge symmetry at the true mini-
mum for the (almost) flat spacetime after inflation over:
g′(s)|ϕ|2 − f ′(s)M2 = g(s) = 0 with ϕ ̸= 0.

For the above potential, the (local) minimum condi-
tions are as follows:

∂Veff
∂ϕ∗ =

[ (
g′ϕϕc − f ′M2

)
g′∗ + |g|2

]
ϕ = 0, (9)

∂2Veff
∂ϕ∂ϕ∗ =

[ (
g′ϕϕc − f ′M2

)
g′∗ + |g|2

]
+ |g′|2|ϕ|2 > 0,

(10)

where we applied the D-flat condition, ϕ∗ = ϕc,
along which the D-term potential associated with the

gauge symmetry where ϕ and ϕc are involved van-
ishes. ∂Veff/∂s

∗, ∂2Veff/∂s∂s
∗, ∂2Veff/∂s∂ϕ

∗, etc. will
be briefly considered later.

With the above expressions, let us first discuss the
various cases the potential Eq. (8) admits for inflation.
Since the minimal gauge kinetic function f ′ = 0 cannot
induce the mass parameter M2 from the gaugino con-
densation in a hidden sector, we will consider only the
cases with f ̸= 0 and f ′ ̸= 0.

1. For the case, g(s) = g′(s) = 0

We have only a positive flat potential, Veff =

|f ′M2|2 > 0, which breaks SUSY. ϕ and ϕc become
moduli fields, which can take any field values. Hence,
the gauge symmetry as well as SUSY are broken. f ′

should vanish eventually for the Minkowski space to be
restored.

2. For g(s) ̸= 0 while g′(s) = 0

Veff still provides a positive constant term, Veff =

|f ′M2|2. Since the waterfall fields ϕ and ϕc get masses
of g(s) as seen in Eq. (8), ϕ and ϕc should be stuck to
the origin, ϕ = ϕc = 0 satisfying ∂Veff/∂ϕ

∗ = 0 and
∂2Veff/∂ϕ∂ϕ

∗ > 0. So the gauge symmetry remains un-
broken, while SUSY is broken.

3. For g′(s) ̸= 0 but g(s) = 0

Whether ϕ and ϕc (= ϕ∗) get VEVs or not depends on
the sign of f ′ ·g′. If it is plus, |ϕ|2 get a VEV, (f ′/g′)M2,
making Veff vanishing. So the gauge symmetry is bro-
ken, while SUSY is protected. On the other hand, if
f ′ · g′ is minus, they should be stuck to the origin with
∂2Veff/∂ϕ∂ϕ

∗ > 0. As a result, the gauge symmetry is
unbroken, while SUSY is broken by the positive vacuum
energy density, Veff|min. = |f ′M2|2.

4. For g(s) ̸= 0 and g′(s) ̸= 0 with |g|2 ≥ f ′g′∗M2

∂Veff/∂ϕ
∗ = 0 is satisfied only by ϕ = 0 in Eq. (9)

keeping the gauge symmetry, because |g′|2|ϕ|2 ≥ 0.
∂2Veff/∂ϕ∂ϕ

∗ > 0 is definitely fulfilled. So we have
Veff|min. = |f ′M2|2 > 0, breaking SUSY.
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5. For g(s) ̸= 0 and g′(s) ̸= 0 with |g|2 < f ′g′∗M2

ϕ should develop a VEV, ϕϕc = |ϕ|2 = (f ′g′∗M2 −
|g|2)/|g′|2 to satisfy Eq. (9). ϕ = 0 cannot meet Eq. (10).
At the minimum, we get positive vacuum energy density
Veff|min. = |g|4/|g′|2 + 2|g|2|ϕ|2 > 0. Consequently, both
SUSY and the gauge symmetry are broken.

As discussed above, only Case 1 and 5 can break both
SUSY and the gauge symmetry. However, Case 1 is a

so trivial case: it does not provide a useful information
for constructing an inflationary model. ϕ and ϕc cannot
play any important role for successful inflation. We are
more interested in Case 5.

Next let us discuss the slope of the inflaton s. For slow
enough rolling down of the inflaton, the first and second
derivatives of Veff with respect to s should be suppressed
enough:

∂Veff
∂s∗

=
(
g′ϕϕc − f ′M2

) (
g′′∗ϕ∗ϕc∗ − f ′′∗M2∗)+ gg′∗

(
|ϕ|2 + |ϕc|2

)
≈ 0, (11)

∂2Veff
∂s∂s∗

=
∣∣g′′ϕϕc − f ′′M2

∣∣2 + |g′|2
(
|ϕ|2 + |ϕc|2

)
≈ 0, (12)

∂2Veff
∂s∂ϕ∗ =

[ (
g′′ϕϕc − f ′′M2

)
g′∗ + g′g∗

]
ϕ ≈ 0. (13)

Note that f ′′, g′′, etc. are zero in the case that f and
g are linear in s, namely, in the original F-term in-
flation. From Eq. (11), hence, g ≈ 0 or g′ ≈ 0

or ϕ = ϕc∗ ≈ 0 is required in such a case. With
this condition, we cannot realize Case 5. We need to
consider the case that f and g are non-linear in s.(
g′ϕϕc − f ′M2

) (
g′′∗ϕ∗ϕc∗ − f ′′∗M2∗) would be helpful

for realizing Case 5 by relaxing the constraint of Eq. (11).
Then the monopole and/or cosmic string problems aris-
ing in the simplest original F-term inflation model can
be resolved, because the gauge symmetry is broken even
during inflation and the resultant unwanted topological
objects are diluted away. To meet Eq. (12), however,
(g′′ϕϕc − f ′′M2) canonot be much large. Once Eq. (12)
is somehow fulfilled, Eq. (13) would easily be satisfied.

In order to return to the (almost) flat spacetime from
the inflationary phase, |g(s)| needs to be made slowly
decrease as in the original scenario: as |g(s)| decreases,
it fails to satisfy Eq. (10) at some point. Then, ϕ and ϕc

start rolling down to their true minima, increasing their
field values rapidly. So ϕ, ϕc and s could eventually meet
g′|ϕ|2 − f ′M2 = g = 0 and |g′|2|ϕ|2 > 0 together with
Veff = 0. Since Fs = 0 at the minimum, thus, they
restore SUSY.

In fact, the gaugino condensation or M2 could be
a SUSY breaking source in a hidden sector as seen in

Eq. (5) [6]: in principle it can generate the soft SUSY
breaking terms in the visible sector through gravity me-
diation effects. However, the effects of the gaugino con-
densation are compensated by ϕ, ϕc and s in this case
so that F ∗

s = g′|ϕ|2 − f ′M2 = 0. Accordingly, we need
either another SUSY breaking source for explaining ele-
mentary particles’ phenomena or an elaborate inflation-
ary model with Veff ̸= 0 at the absolute minimum, where
the non-zero Veff [≈ (1010−11 GeV)4] should be compen-
sated by the SUGRA correction for the flat universe with
broken SUSY.

For slow roll of the inflaton, the SUGRA correction
needs to be suppressed enough even during inflation
as in the original scenario. Assuming g|ϕ|2 ≪ fM2

and g′|ϕ|2 ≪ f ′M2 during inflation for simplicity, the
SUGRA scalar potential approximately takes the follow-
ing form:

VSUGRA ≈
(
1 +

|s|2

M2
P

)
×

[∣∣∣∣1 + ( f

f ′s

)
|s|2

M2
P

∣∣∣∣2 − 3

∣∣∣∣ f

f ′s

∣∣∣∣2 |s|2

M2
P

] ∣∣f ′M2
∣∣2 ,

(14)

where we took the minimal K�ahler potential again. As
discussed in Case 5 and Eq. (9), |f ′M2|2 in Eq. (14) can
be replaced by |g|4/|g′|2. The form of f(s) should be
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constrained such that the mass term of s is suppressed
enough.

Constructing a concrete model is beyond the scope of
this paper. In this paper, we are satisfied with providing
a foundation for a better scenario.

IV. CONCLUSION

In conclusion, we have seen that the simplest original
F-term inflationary model can be reproduced, when the
gauginos in a hidden sector condense and the relevant
the gauge kinetic function linearly depends on the in-
flaton field. We pointed out that the monopole and/or
cosmic string problems in the simplest original F-term
inflationary model could be resolved, if the inflaton cou-
ples non-linearly to the waterfalls fields as well as the
hidden sector gauginos.

ACKNOWLEDGEMENTS

This work was supported by a 2-year Research Grant
of Pusan National University.

REFERENCES

[1] D. H. Lyth and A. Riotto, Phys. Rept. 314, 1
(1999).

[2] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[3] S. W. Hawking, Phys. Lett. B 115, 295 (1982).
[4] A. A. Starobinsky, Phys. Lett. B 117, 175 (1982).
[5] A. H. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110

(1982).
[6] H. P. Nilles, Phys. Rept. 110, 1 (1984).
[7] A. Linde, Phys. Lett. B 108, 389 (1982).
[8] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett.

48, 1220 (1982).
[9] P. J. Steinhardt and M. S. Turner, Phys. Rev. D

29, 2162 (1984).
[10] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D.

Stewart and D. Wands, Phys. Rev. D 49, 6410
(1994).

[11] E. D. Stewart, Phys. Rev. D 51, 6847 (1994).
[12] P. Binetruy and G. R. Dvali, Phys. Lett. B 388,

241 (1996).
[13] G. R. Dvali, Q. Shafi and R. K. Schaefer, Phys.

Rev. Lett. 73, 1886 (1994).
[14] B. Kyae and Q. Shafi, Phys. Lett. B 635, 247

(2006).
[15] B. Kyae and Q. Shafi, Phys. Rev. D 72, 063515

(2005).
[16] B. Kyae and Q. Shafi, Phys. Lett. B 597, 321

(2004).
[17] P. A. R. Ade et al. [Planck Collaboration], Astron.

Astrophys. 594, A20 (2016).

http://dx.doi.org/10.1016/S0370-1573(98)00128-8
http://dx.doi.org/10.1016/S0370-1573(98)00128-8
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)90373-2
http://dx.doi.org/10.1016/0370-2693(82)90541-X
http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://dx.doi.org/10.1016/0370-1573(84)90008-5
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevD.29.2162
http://dx.doi.org/10.1103/PhysRevD.29.2162
http://dx.doi.org/10.1103/PhysRevD.49.6410
http://dx.doi.org/10.1103/PhysRevD.49.6410
http://dx.doi.org/10.1103/PhysRevD.51.6847
http://dx.doi.org/10.1016/S0370-2693(96)01083-0
http://dx.doi.org/10.1016/S0370-2693(96)01083-0
http://dx.doi.org/10.1103/PhysRevLett.73.1886
http://dx.doi.org/10.1103/PhysRevLett.73.1886
http://dx.doi.org/10.1016/j.physletb.2006.03.007
http://dx.doi.org/10.1016/j.physletb.2006.03.007
http://dx.doi.org/10.1103/PhysRevD.72.063515
http://dx.doi.org/10.1103/PhysRevD.72.063515
http://dx.doi.org/10.1016/j.physletb.2004.07.030
http://dx.doi.org/10.1016/j.physletb.2004.07.030
http://dx.doi.org/10.1051/0004-6361/201525898
http://dx.doi.org/10.1051/0004-6361/201525898

