search for




 

https://doi.org/10.3938/NPSM.67.1
Effects of CF$_4$ Plasma Treatment on Electrostatic Discharge Performance of AlGaN/GaN Schottky Barrier Diodes
New Physics: Sae Mulli 2017; 67: 1~6
Published online January 31, 2017;  https://doi.org/10.3938/NPSM.67.1
© 2017 New Physics: Sae Mulli.

Yeji LEE1, Jihyun YU1, Taehoon JANG1, Kyuhwan SHIM*1, Deokho CHO2

1 School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 54896, Korea
2 R&D Division, Sigetronics, Inc., Jeonju 55314, Korea
Correspondence to: khshim@jbnu.ac.kr
Received September 21, 2016; Revised November 9, 2016; Accepted November 9, 2016.
cc This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
In this research, CF$_4$ plasma treatment was performed to improve the reliability of the Schottky barrier diode. The investigation of the Schottky barrier diode focused on improving in the leakage current, breakdown voltage and electrostatic discharge (ESD) characteristics of the device. The CF$_4$ plasma treatment was performed using CF$_4$ (30 sccm) gas under a 50 W RF power and a 10 mTorr working pressure on the surface of an AlGaN layer for 30 seconds. The current of the device was decreased when the plasma treatments were used. The forward current was decreased 7$\sim$12 times, and the leakage current was decreased 95$\sim$1100 times, as well. However, the breakdown voltage and the ESD characteristics of the devices were improved because of the decrease in the leakage current. The measurements of ESD were conducted using human body model (HBM), and the ESD characteristics of the device were improved by plasma treatments. With increasing area of the Schottky diode, the ESD characteristics were dramatically improved. Therefore, the CF$_4$ plasma treatment in the area of the AlGaN/GaN SBD can be concluded to have improved the robustness of the device (resistance to an ESD) by decreasing the leakage current.
PACS numbers: 61.72.uj, 84.30.Jc, 71.20.Nr, 51.50.+v, 87.15.Pc
Keywords: Gallium-nitride (GaN), Schottky barrier diode (SBD), Electrostatic discharge (ESD), CF$_4$ plasma treatment


August 2017, 67 (8)