search for
Design of a Gamma-Ray Detector by Applying the New Depth-of-Interaction Method
New Phys.: Sae Mulli 2019; 69: 1033~1037
Published online October 31, 2019;
© 2019 New Physics: Sae Mulli.

Seung-Jae LEE1,2, Cheol-Ha BAEK*3

1Department of Radiological Science, Dongseo University, Busan 47011, Korea
2Center for Radiological Environment & Health Science, Dongseo University, Busan 47011, Korea
3Department of Radiological Science, Kangwon National University, Samcheok 25949, Korea
Correspondence to:
Received August 21, 2019; Revised August 29, 2019; Accepted August 29, 2019.
cc This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Using a Geant4 Application for Tomographic Emission(GATE) and a DETECT2000 simulation tool, we designed a detector to track the locations at which gamma-rays interacted with the scintillator. After the locations of the gamma ray interactions with the scintillator had better obtained through the GATE program, that information was used in the DETECT2000 simulation tool to generate light. The detector was composed of two layers of scintillators, and the photosensor used a silicon photomultiplier (SiPM). The upper scintillator was wrapped with a specular reflector and the bottom was wrapped with a diffuse reflector. Photoelectric peaks were positioned at different positions when energy spectra obtained by varying the signal size obtained from the photosensor by treating the layers with different reflectors. The layers in which the scintillators and the gamma rays interacted could be distinguished by using a positional analysis of photoelectric peaks. This method can be used to develop detectors to measure the depths of interaction in the future.
PACS numbers: 24.10.Lx, 87.57.U-
Keywords: Gamma detector, Depth-of-interaction, Energy spectrum, GATE, DETECT2000

October 2019, 69 (10)
  • Scopus
  • CrossMark