npsm logo

Table. 2.

AUC, CA, F1, Precision, Recall scores for classification models.

Model Target Class AUC CA F1 Precision Recall
kNN ALL 0.986 0.955 0.954 0.953 0.955
SVM 0.997 0.971 0.972 0.973 0.971
Random Forest 0.982 0.933 0.919 0.932 0.933
Neural Network 0.997 0.971 0.971 0.971 0.971
Logistic Regression 0.998 0.976 0.976 0.976 0.976
kNN BLANK 0.999 0.997 0.995 0.991 1
SVM 1 0.998 0.997 1 0.995
Random Forest 1 0.998 0.997 0.995 1
Neural Network 1 0.998 0.996 0.992 1
Logistic Regression 1 0.999 0.999 0.997 1
kNN FALSE0.985 0.955 0.965 0.957 0.972
SVM 0.997 0.971 0.977 0.982 0.972
Random Forest 0.979 0.933 0.949 0.909 0.992
Neural Network 0.996 0.971 0.977 0.977 0.977
Logistic Regression 0.998 0.976 0.981 0.978 0.983
kNN TRUE 0.958 0.958 0.755 0.812 0.706
SVM 0.992 0.973 0.859 0.826 0.894
Random Forest 0.95 0.934 0.479 0.899 0.327
Neural Network 0.991 0.973 0.853 0.866 0.841
Logistic Regression 0.994 0.977 0.871 0.889 0.853
New Phys.: Sae Mulli 2023;73:138~149 https://doi.org/10.3938/NPSM.73.138
© NPSM