AUC, CA, F1, Precision, Recall scores for classification models.
Model | Target Class | AUC | CA | F1 | Precision | Recall |
---|---|---|---|---|---|---|
kNN | ALL | 0.986 | 0.955 | 0.954 | 0.953 | 0.955 |
SVM | 0.997 | 0.971 | 0.972 | 0.973 | 0.971 | |
Random Forest | 0.982 | 0.933 | 0.919 | 0.932 | 0.933 | |
Neural Network | 0.997 | 0.971 | 0.971 | 0.971 | 0.971 | |
Logistic Regression | 0.998 | 0.976 | 0.976 | 0.976 | 0.976 | |
kNN | BLANK | 0.999 | 0.997 | 0.995 | 0.991 | 1 |
SVM | 1 | 0.998 | 0.997 | 1 | 0.995 | |
Random Forest | 1 | 0.998 | 0.997 | 0.995 | 1 | |
Neural Network | 1 | 0.998 | 0.996 | 0.992 | 1 | |
Logistic Regression | 1 | 0.999 | 0.999 | 0.997 | 1 | |
kNN | FALSE0.985 | 0.955 | 0.965 | 0.957 | 0.972 | |
SVM | 0.997 | 0.971 | 0.977 | 0.982 | 0.972 | |
Random Forest | 0.979 | 0.933 | 0.949 | 0.909 | 0.992 | |
Neural Network | 0.996 | 0.971 | 0.977 | 0.977 | 0.977 | |
Logistic Regression | 0.998 | 0.976 | 0.981 | 0.978 | 0.983 | |
kNN | TRUE | 0.958 | 0.958 | 0.755 | 0.812 | 0.706 |
SVM | 0.992 | 0.973 | 0.859 | 0.826 | 0.894 | |
Random Forest | 0.95 | 0.934 | 0.479 | 0.899 | 0.327 | |
Neural Network | 0.991 | 0.973 | 0.853 | 0.866 | 0.841 | |
Logistic Regression | 0.994 | 0.977 | 0.871 | 0.889 | 0.853 |