npsm 새물리 New Physics : Sae Mulli

pISSN 0374-4914 eISSN 2289-0041
Qrcode

Article

Research Paper

New Phys.: Sae Mulli 2020; 70: 630-636

Published online August 31, 2020 https://doi.org/10.3938/NPSM.70.630

Copyright © New Physics: Sae Mulli.

Calculation of the Stacking Fault Energy by Using the Anisotropic Next-Nearest Neighbor Ising Model

Byeong-Hyeon JEONG, Ji-Sang PARK*

Department of Physics, Kyungpook National University, Daegu, 41566, Korea

Received: June 4, 2020; Revised: June 24, 2020; Accepted: June 25, 2020

jsparkphys@knu.ac.kr

Abstract

A stacking fault is a type of extended defect formed in a material. It is known to prohibit the transport of charges in semiconductor materials and promote the recombination of charges; therefore, the performance of electronic devices can be suppressed. For investigating of the stability of stacking faults, first-principles calculations are widely performed, which can be also described using an anisotropic next-nearest-neighbor Ising model (ANNNI) and can be constructed using the total energy of polytypes obtained from the first-principles calculations. In this study, we constructed the ANNNI model for diamond Si and zinc-blende CdTe, ZnS, and GaAs. Our models consider the interactions between two and three layers, resulting in a lower error than the models using only two-layer interactions. The predicted stacking fault energy was similar to that from the first-principles calculations, indicating that the stacking fault energy can be obtained using the ANNNI model.

Keywords: Stacking fault, Extended defect, Ising model, Semiconductor

Figures

Fig. 1.

Atomic structure of several polytypes. Red circles and blue circles represent cations (e.g. Ga) and anions (e.g. As). The atomic structure of polytypes in Si can be obtained by replacing atoms with Si. Layers were

distinguished by alphabet A, B, and C.


Stats or Metrics

Share this article on :

Related articles in NPSM