npsm 새물리 New Physics : Sae Mulli

pISSN 0374-4914 eISSN 2289-0041
Qrcode

Article

Research Paper

New Phys.: Sae Mulli 2018; 68: 552-556

Published online May 31, 2018 https://doi.org/10.3938/NPSM.68.552

Copyright © New Physics: Sae Mulli.

Study of the Critical Behavior of the Ising Model on a Kagomé Lattice

카고메 격자 위의 이징 모형의 임계현상 연구

Seung-Yeon KIM1, Wooseop KWAK*2

1 School of Liberal Arts and Sciences, Korea National University of Transportation, Chungju 27469, Korea
2 Department of Physics, Chosun University, Gwangju 61452, Korea

Correspondence to:wkwak@chosun.ac.kr

Received: March 21, 2018; Revised: April 24, 2018; Accepted: May 7, 2018

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We numerically investigate the second-order phase transition of the ferromagnetic Ising model on a two-dimensional kagomé lattice. The critical behavior of this model is studied using Wang-Landau entropic sampling, and the joint density of states is obtained as a function of the energy and the magnetization. The partition function, which is a function of temperature, is calculated using the joint density of states. Using the partition function, we found a critical point and a thermodynamic function, such as the specic heat and the magnetic susceptibility, at the critical point, and by using finite-size scaling, we obtained the critical exponents in the thermodynamic limit, with those exponents satisfiying the hyperscaling relations.

Keywords: Ising model, Joint density of states, Kagomé lattice, Wang-Landau entropic sampling

이차원 카고메 (Kagomé) 격자 위의 강자성 이징 모형의 임계현상을 엔트로피 표본잡기(entropic sampling)를 이용하여 연구하였다. 왕-란다우 엔트로피 표본잡기(Wang-Landau entropic sampling)를 이용하여 얻은 에너지와 질서맺음변수(order parameter)의 결합 상태밀도(joint density of states)를 이용하여 온도의 함수인 분배함수(partition function)를 계산하였다. 분배함수를 이용하여 임계점(critical point)을 구하고 임계점에서 비열(specific heat) 등의 열역학 함수(thermodynamic function)를 얻었으며, 유한축적 법칙(finite size scaling)을 이용하여 열역학적 극한(thermodynamic limit)에서의 열역학 함수의 임계현상을 탐구하였다.

Keywords: 이징 모형, 결합 상태밀도, 카고메 격자, 왕-란다우 엔트로피 포본잡기

Stats or Metrics

Share this article on :

Related articles in NPSM