npsm 새물리 New Physics : Sae Mulli

pISSN 0374-4914 eISSN 2289-0041
Qrcode

Article

Research Paper

New Phys.: Sae Mulli 2019; 69: 1033-1037

Published online October 31, 2019 https://doi.org/10.3938/NPSM.69.1033

Copyright © New Physics: Sae Mulli.

Design of a Gamma-Ray Detector by Applying the New Depth-of-Interaction Method

Seung-Jae LEE1,2, Cheol-Ha BAEK*3

1Department of Radiological Science, Dongseo University, Busan 47011, Korea

2Center for Radiological Environment & Health Science, Dongseo University, Busan 47011, Korea
3Department of Radiological Science, Kangwon National University, Samcheok 25949, Korea

Correspondence to:baekch100@gmail.com

Received: August 21, 2019; Revised: August 29, 2019; Accepted: August 29, 2019

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Using a Geant4 Application for Tomographic Emission(GATE) and a DETECT2000 simulation tool, we designed a detector to track the locations at which gamma-rays interacted with the scintillator. After the locations of the gamma ray interactions with the scintillator had better obtained through the GATE program, that information was used in the DETECT2000 simulation tool to generate light. The detector was composed of two layers of scintillators, and the photosensor used a silicon photomultiplier (SiPM). The upper scintillator was wrapped with a specular reflector and the bottom was wrapped with a diffuse reflector. Photoelectric peaks were positioned at different positions when energy spectra obtained by varying the signal size obtained from the photosensor by treating the layers with different reflectors. The layers in which the scintillators and the gamma rays interacted could be distinguished by using a positional analysis of photoelectric peaks. This method can be used to develop detectors to measure the depths of interaction in the future.

Keywords: Gamma detector, Depth-of-interaction, Energy spectrum, GATE, DETECT2000

Geant4 Application for Tomographic Emission (GATE)와 DETECT2000 시뮬레이션 툴을 사용하여 감마선이 섬광체와 상호작용한 층을 추적할 수 있는 검출기를 설계하였다. GATE를 통해 감마선과 섬광체가 상호작용한 위치 정보를 획득한 후, DETECT2000 시뮬레이션 툴에 이 정보를 적용하여 빛을 발생시켰다. 두 층의 섬광체로 검출기를 구성하였으며, 광센서는 실리콘광전증배관(Silicon photomultiplier, SiPM)을 사용하였다. 검출기는 두 층의 섬광체로 구성하였고, 위층은 거울반사체로, 아래층은 난 반사체로 처리하였다. 각 층별 서로 다른 반사체로 처리하여 광센서에서 획득되는 신호의 크기를 서로 다르게 하여 에너지스펙트럼을 획득하였을 때 서로 다른 위치에 광전 피크가 위치하였다. 광전 피크의 위치 분석을 통해 섬광체와 감마선이 반응한 층을 구별할 수 있었다. 본 검출기 설계를 통해 향후 검출기를 개발할 때 적용함으로써 새로운 반응 깊이를 측정할 수 있는 검출기를 개발할 수 있을 것으로 판단된다.

Keywords: 감마 검출기, 반응깊이측정, 에너지 스펙트럼, GATE, DETECT2000

Stats or Metrics

Share this article on :

Related articles in NPSM