Ex) Article Title, Author, Keywords
Ex) Article Title, Author, Keywords
New Phys.: Sae Mulli 2021; 71: 446-449
Published online May 31, 2021 https://doi.org/10.3938/NPSM.71.446
Copyright © New Physics: Sae Mulli.
Nguyen Thi My NHUNG, Heon-Jung KIM*
Department of Materials-Energy Science and Engineering, Daegu University, Gyeongsan 38453, Korea
Correspondence to:hjkim76@daegu.ac.kr
In this study, we report the deposition of La$_{0.7}$Ca$_{0.3}$MnO$_{3}$/CaMnO$_{3}$/La$_{0.7}$Ca$_{0.3}$MnO$_{3}$ heterostructures on (100) SrTiO$_{3}$ substrates under optimal conditions for depositions of single layers of CaMnO$_{3}$ and La$_{0.7}$Ca$_{0.3}$MnO$_{3}$ by using the pulsed laser deposition (PLD) method. Using X-ray diffraction (XRD), atomic force microscopy (AFM), and resistivity measurements, we determined the crystallinity, morphology and electrical properties of these heterostructures. The surface of those films were smooth and uniform with small grains.
Keywords: PLD method, Manganites, Heterostructures, Perovskite
The perovskite manganese oxides with the general formula of R1−
Among the phases observed in La1−
In this work, we characterize a heterostructure composed of a thin layer CMO with thickness t sandwiched by top and bottom LCMO layers. In particular, we focus on the optimization of sample synthesis and the characterization of crystallinity, surface morphology and electrical transport of the LCMO/CMO/LCMO heterostructures.
The La0.7Ca0.3MnO3 and CaMnO3 targets were prepared by standard solid state reaction. First, the pure La2O3, CaCO3 and MnO2 powder were calcined at 1000 °C for 6 hours in air. Next, they were ground in an agate mortar for thorough mixing before pressing this mixture into a round pellet with diameter of 2 cm by using a pressing die. Then, the pellets were calcined in air inside furnace. The process of mixing and calcinations were repeated several times. Finally, the pellets were sintered in air at 1350 °C for 24 hours. High density of pellets is necessary to minimize formation of particulates during deposition. Prior to deposition, the SrTiO3 (STO) (001) substrate (0.25 × 0.25 cm from Crystec) were cleaned twice in acetone and twice in ethanol to remove dust or any other greasy contaminants. Then, substrates were glued on substrate holders with silver paste to ensure good thermal contact.
A KrF excimer laser with wavelength of
XRR and XRD results of heterostructures was carried out using synchrotron radiation in Pohang Light Source. The morphology of our samples was measured by the AFM technique Here, we used the contact mode. RT curves were measured using Van der Pauw method. In order to use this method, the size of sample with 2.5 × 2.5 mm was contacted by four copper wires at the edges of sample by silver paste. Here, current flow along one edge of the sample and the voltage across opposite edge is measured.
Fig.1 shows the AFM results of CMO, LCMO and LCMO10/CMO20/LCMO10 thin films, respectively, where the numbers in the heterostructure denote the deposition time. A uniform and homogeneous surface morphology with small RMS roughness is seen. The RMS roughness Rq was calculated to be 1.96 nm, 0.26 nm and 0.24 nm for CMO, LCMO, and LCMO10/CMO20/LCMO10, respectively.
The XRR results of heterostructures is shown in Fig.2. The film thickness of the CMO30 and LCMO30 samples are determined to be 30.1 nm and 15.4 nm by extracting from fitting data. The XRD pattern is shown in Fig.3, the LCMO peak in single layer is located at lower angles than the CMO peak, which indicate the out of plane lattice constant of LCMO layer higher than that of CMO layer. Compared to the single LCMO and CMO layers, the position of the film peaks shifts to the higher angles when the thickness of the middle CMO layer is increased. This confirms that the CMO layer in the middle is tensilely strained by the top and bottom LCMO layers and its unit cell elongates along the a- direction by elastic deformation. The Kiessig fringes in the heterostructures are more complex than in the single layer because the heterostructure films have two more interfaces. Judging from AFM, XRR, and XRD data, all the samples are comparable quality in terms of surface smoothness and crystallinity.
Table 1 Deposition conditions of La0.7Ca0.3MnO3/CaMnO3/ La0.7Ca0.3MnO3 heterostructures on SrTiO3 (001) substrates.
SrTiO3/ La0.7Ca0.3MnO3/CaMnO3/ La0.7Ca0.3MnO3 (STO/LCMO/CMO/LCMO) | ||
---|---|---|
STO/LCMO10/CMO( | STO/LCMO( | |
Substrate temperature ( | 700 °C | 700 °C |
Energy density ( | 1.5 J/cm2 | 1.5 J/cm2 |
Oxygen Pressure ( | 0.2 – 0.3 torr | 0.2 – 0.3 torr |
Deposition time ( | ||
Note: LCMO10 is a LCMO layer which was deposited for CMO05 is a CMO layer which was depsoited for |
We measured the sheet resistance as a function of temperature (RT) of single CMO, LCMO, and heterostructures by using Van der Pauw method. Temperaturedependent resistivity of the CMO thin film is shown in Fig. 4a, which shows the expected insulating behavior. On the other hand, the LCMO thin films in Fig. 4b exhibit the metallic and insulating behaviors at low and high temperatures, respectively.
In case of heterostructures, we investigated the resistivity of LCMO/CMO/LCMO heterostrucutures while changing the thickness of the middle CMO layer or the bottom LCMO layer. First, we investigated LCMO/CMO/LCMO heterostructures with the bottom LCMO layer varied from 10 to 60 mins and with the middle CMO and top LCMO layers whose deposition times are 5 mins and 10 mins, respectively. As the deposition time of the bottom LCMO increases, the heterostructures become more metallic.
Then, we prepared LCMO/CMO/LCMO heterostructures while deposition time of the middle CMO layer are changed from 5 mins to 30 mins while keeping the deposition time of bottom and top LCMO to be 10 mins. The RT result is shown in Fig.4c for the film with middle CMO20 layer deposited for 20 mins. This heterostructure shows metallic behavior from 2 K to 25 K and insulating behavior at higher temperatures. This heterostructure shows an insulator-metal transition around 30 K – 70 K. This reduced insulator-metal transition temperature is related to the increased localization tendency of the
We have reported the synthesis of LCMO/CMO/LCMO heterostructures. After we found an optimal growth condition common for LCMO and CMO, we successfully grew LCMO/CMO/LCMO heterostructures with sharp interfaces and good crystallinity. We observed a very pronounced peak at low temperature in the RT curve of LCMO/CMO/LCMO heterostructures. At present we do not fully understand its origin and so, further experiments are necessary.
This research was supported in part by the Daegu University Research Funds.